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Abstract. Wildfires are key to landscape transformation and vegetation succession, but also to socio-ecological values loss. 

Fire risk mapping can help to manage the most vulnerable and relevant ecosystems impacted by fires. However, few studies 10 

provide accessible daily dynamic results at different spatio-temporal scales. We develop a fire risk model for Sicily (Italy), an 

iconic case of the Mediterranean basin, integrating a fire hazard model with an exposure and vulnerability analysis under 

present and future conditions. The integrated model is data-driven but can run dynamically at a daily time-step, providing 

spatially and temporally explicit fashion results through the k.LAB platform. K.LAB provides an environment for input data 

integration, employing modeling methods such as Geographic Information System, Remote Sensing and Bayesian Network 15 

algorithms. All data and models are semantically annotated, open and downloadable in agreement with the FAIR principles 

(Findable, Accessible, Interoperable and Reusable). The fire risk analysis reveals that 45% of vulnerable areas of Sicily are at 

high probability of danger in 2050. The risk model outputs also include qualitative risk indexes, which can make the results 

more understandable for non-technical stakeholders. We argue that this approach is well suited to aid in landscape management 

and preventing wildfires due to climate change.  20 

1 Introduction 

Fire, as a natural disturbance, has played an important role in shaping forest structure, increasing biodiversity and leading the 

species' evolution (Bond and Keeley, 2005; Pausas et al., 2004). However, the balance between the natural fire regime and the 

ecosystem is often disrupted when humans modify the environment to their needs. In recent years, the rural depopulation and 

simultaneous spread of urban areas as residential buildings into the countryside have increased the fire frequency and burned 25 

areas (Faivre et al., 2014; Robinne et al., 2016). Although this is a worldwide problem, the Mediterranean climatic area had a 

great impact (Kocher and Butsic, 2017; Leone et al., 2009; Pausas and Fernández-Muñoz, 2012). 

Sicily (Italy), the largest island of the Mediterranean Sea with 25711 km², has been the cradle of several civilizations and its 

traditions with continuous and intense human exploitation of natural resources (forestry, grazing, agriculture) (Antrop, 2005; 

Sereni, 1961), encompassing multiple agricultural and agroforestry landscapes (Baiamonte et al., 2015; Di Maida, 2020). Due 30 

to its great variability of topography, lithology, pedology (Catalano et al., 1996) and climate (Bazan et al., 2015) (Bazan et al., 
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2015), Sicily is rich in biodiversity and ecosystems (Cullotta and Marchetti, 2007; Peruzzi et al., 2014). Therefore, the island 

can be viewed as representative of the Mediterranean basin as a whole. 

Moreover, Sicily is the most populated island in the Mediterranean Sea with nearly 5 million inhabitants, similar to Denmark 

or Finland (Planistat Europe and Bradley Dunbar Association, 2003). As a consequence, year after year the environment has 35 

undergone degradation due to the increase of intensive farming practices, the urbanization growth in the most populated and 

tourist areas and the loss of traditional agricultural and forest management because of the rural population abandonment (Bazan 

et al., 2019; Falcucci et al., 2007; Prestia and Scavone, 2018). In the last 50 years, the increase of forest and scrub mass due to 

the abandonment of traditional land management (Bonanno, 2013; Ragusa and Rapicavoli, 2017) and the increase in the 

frequency of long droughts created optimal conditions for the occurrence of wildfires (Mouillot et al., 2005; Ruffault et al., 40 

2020). The population living in the wildland-urban interface zone is particularly at risk due to exposure to fire and difficulty 

in evacuation. 

Uncontrolled fires in Sicily have increased in recent years, making Sicily the Italian region with the highest number of fire 

events (Figure 1a) and the largest affected area (Figure 1b). Fire hazard is mainly linked to ignition source, forest fuels and 

environmental conditions (Ganteaume et al., 2013; Hantson et al., 2015; Ricotta and Di Vito, 2014). The ignition sources are 45 

usually divided into natural causes (mainly lightning but geological causes too) and human (accidentally or intentionally) 

(Aldersley et al., 2011; Ganteaume et al., 2013; Rodrigues and de la Riva, 2014). The main causes of wildfires in Sicily are 

human-driven (Corrao, 1992; Ferrara et al., 2019). Arson and accidental fires, set up to create new pasture resources or to burn 

stubble, are the first causes of wildfires, especially in areas where vegetation interfaces with urban structures. 
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Figure 1: a) Cumulative frequency of fire events between 2009 and 2016 in Italy by region. b) Total area affected by fire in Italy 

from 2009 to 2016. Source: Statistiche sull’attività antincendio, Servizi AntiIncendio Boschivo, Roma, www.corporeforestale.it 

The consequences of fires exceed the loss of forest cover, vary over time and can be long-lasting. Some ecosystem properties 

and functions that represent a benefit to humans, known as ecosystem services (Daily et al., 1997; Roces-Díaz et al., 2022), 

are lost when fires occur, such as biodiversity, carbon sequestration or outdoor recreation locations (Moreira and Russo, 2007). 55 

After the majority of wildfires in summer, with the arrival of the first heavy rains, there can be extensive erosion in burned 

areas, loss of organic matter or pollution of adjacent water bodies (Bisson et al., 2005; Certini, 2005).  

The  literature on fire modeling, at different spatio-temporal scales, is vast (Ganteaume et al., 2013; Jain et al., 2020; Tymstra 

et al., 2020). Due to its drought sensitivity, most studies focus on the Mediterranean climatic region (Oliveira et al., 2012; Satir 

et al., 2016; Wittenberg and Malkinson, 2009). Among the different methods applied, machine learning models are gaining 60 

traction due to increased computing power and data access. Many algorithms have been tested, including artificial neural 

networks, support vector machines, maximum entropy or random forest (Jain et al., 2020).  

https://doi.org/10.5194/egusphere-2023-138
Preprint. Discussion started: 20 February 2023
c© Author(s) 2023. CC BY 4.0 License.



4 

 

Risk fire mapping has been one of the most widely studied approaches in the forest fire literature. Even so, many models have 

become obsolete and have not been renewed (Ager and Finney, 2010; Mohajane et al., 2021), the spatial-temporal resolution 

is too coarse (Lozano et al., 2017) or does not take into account the distribution of forest fuel types (Bacciu et al., 2021; Michael 65 

et al., 2021), which is essential for risk reduction (Castellnou et al., 2019). Moreover, risk conditions for society are induced 

by progressive changes in environmental conditions. For this reason, it is indispensable to create open models that can 

incorporate new transdisciplinary data and knowledge (Nikolakis and Roberts, 2022; Wunder et al., 2021) that have arisen 

since 2016 (Artés et al., 2019; Duane et al., 2021). 

On the society side, knowledge plays a key role in risk reduction, decision-making, coordinated policy action, and re-learning 70 

on fire. Vulnerability is associated with a lack of risk communication, especially a lack of sufficient information that can lead 

to a misunderstanding of risk (Birkmann et al., 2010). This has important implications for motivation and perceptual capacity 

to act and adapt to climate change (Grothmann and Patt, 2005). Moreover, understanding the fire risk processes can help 

society to comprehend the landscape transformation needed for a lower-risk environment (Otero et al., 2018). Although efforts 

are being made, still few resources are allocated to the accessibility, sharing, and integration of knowledge at multiple scales 75 

across different stakeholders (Weichselgartner and Pigeon, 2015). Therefore, it is crucial to develop accessible tools and 

methods for fire risk assessment, where managers and stakeholders can consider social and environmental consequences. 

Similarly, on the scientific side, lack of transparency has been one of the traditional characteristics of modeling (black box 

model), even the decision support systems leading to various scientific, management and ethical issues (Guidotti et al., 2018). 

Moreover, most of the models and resources developed by scientific research are not transferable or shared between different 80 

machines or languages. To connect the scientific knowledge generated, we applied the Integrated Modeling approach of 

ARtificial Intelligence for Environment & Sustainability (ARIES) implementing the FAIR principles (Wilkinson et al., 2016) 

through the k.LAB platform. These principles apply to the generated data and models, which must be: 

● Findable: simple to identify by humans and computers;  

● Accessible: easy access to metadata and resources stored; 85 

● Interoperable: should be ready to be exchanged, interpreted and combined in a (semi)automated way with other 

datasets and; 

● Reusable: sufficiently well-described to be reused in future research and integrated with other data sources. 

 

This study analyses wildfire activity for the years 2007-2020, with the aim of modeling fire risk in Sicily. Due to the wide 90 

variety of definitions of fire risk, we have relied on the definition provided by (IPCC, 2012). Thus, in this article we focus on 

answering three questions:  

1. Where is it likely to occur,  
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2. What ecosystem services might it affect, and  

3. How significant would it be for the environment and society? 95 

 

To this end, we have developed a set of models in the k.LAB platform. These models are modular and interconnected under 

k.LAB, where we simulated the current wildfires and their interaction with key human and biophysical drivers, using a machine 

learning algorithm. Furthermore, as proof of the advantages of using FAIR data and resources, it has been possible to analyze 

future fire risk under climate change and see the consequences for different ecosystem services using models included in 100 

ARIES and developed by other experts. 

2 Material and Methods 

2.1 Study area 

The case study was carried out on the island of Sicily, the largest and most populated island in the Mediterranean. Within its 

2,571 ha, the altitudinal range reaches 3,357 m at the peak of one of the most active volcanoes in the world (Thomaidis et al., 105 

2021). The island has a Mediterranean climate with mild and wet winters and dry and hot summers, highlighting the southwest 

coast, where the climate is affected by the African currents and summers. Rainfall is scarce leading to water deficits in some 

provinces. Moreover, the change in land use has gradually modified the climate, with less rainfall and drier rivers (Drago, 

2005; Ragusa and Rapicavoli, 2017).  

The land use change caused mainly by the intense deforestation throughout Sicily's history had favored intense agricultural 110 

practices nowadays, especially in the center and southwest Thus, agricultural areas cover 57% of the island, whose 35% are 

arable lands and 22% permanent crops and roughly a third of Sicily is forest, shrublands and open areas. Woodlands and semi-

natural areas are sparse in the agricultural area and denser in areas with special protection, being the most important the Mount 

Etna surroundings, in the Nebrodi Mountains Regional Park and in the Natural Reserve of Bosco della Ficuzza (Sicilia 

Assessorato beni culturali ed ambientali e pubblica istruzione, 1996). Due to its long-lasting socio-ecological history, location 115 

in the Mediterranean Sea, its fragility to climate change, and increasing fire regime, Sicily represents an ideal study area 

representative of the Mediterranean socio-ecological context. 

2.2 Fire risk analysis 

The interaction of environmental and social processes drives the risk (Table 1), determined by the combination of a physical 

hazard and the vulnerability of the socio-ecological elements exposed (IPCC, 2012). 120 

Table 1.  Fire risk is defined by vulnerability and hazard components (IPCC, 2012). 

RISK 
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1. Hazard  2.Exposure  3.Vulnerability 

Physical event (natural or human-

induced) that may occur and 

damage the elements in the same 

time-space context. 

Elements that are in a context 

where a hazardous event, such as 

fire, may happen. 

The tendency of socio-ecological 

exposed elements to be adversely 

affected by a hazardous event. 

Predisposition, susceptibility, 

fragility, weakness, defect, or lack 

of ability drive adverse effects on 

the exposed elements. 

Fire Components 

● Weather: 

○ Temperature 

○ Weekly 

Maximum 

temperature 

○ Days without 

precipitation 

○ Weekly 

precipitation 

○ Solar radiation 

● Biophysical drivers: 

○ Forest fuel 

○ Elevation 

○ Slope 

● Human drivers: 

○ Distance to 

protected area 

○ Distance to road 

○ Distance to 

human 

settlement 

Ecosystem services exposed 

● Vegetation carbon mass 

● Pollination 

● Outdoor recreation 

● Biodiversity 

●  Soil retention 

Vulnerability 

● Wildland-Urban Interface 

(WUI) 

● Wildland-Agricultural 

Interface (WAI) 

● Nationally designated 

areas (CDDA) 

Fire hazard captures the probability of fire occurrence, based on historical fires and drivers such as biophysical factors and 

human-modified areas. The fire hazard interacts with the elements exposed; we highlight exposed ecological values and 

ecosystem services such as biodiversity, pollination, carbon mass, soil retention and outdoor recreation that may be affected 

by fire occurrence.  125 

Vulnerability identifies exposed elements that are more susceptible to being highly or irreparably damaged due to their intrinsic 

or contextual characteristics. Wildland-Urban Interface (WUI) is particularly fire-prone because it is a forested area less than 

200 meters from an urban area (Ganteaume et al., 2021; Intini et al., 2020), due to the relationship between the ignition points 

and populated areas (Chappaz and Ganteaume, 2022). It also represents a high weakness for human settlement, as they are 

extremely close to the forest, becoming a problem in fire management (Cohen, 2008). Wildland-Agricultural Interface (WAI) 130 

is a forest area in close proximity (less than 200 meters) to an agricultural area and highly predisposed to burning due to the 

fire used for clearing forest and pasture or crop establishment (Leone et al., 2009; Ortega et al., 2012). Moreover, fire impacts 
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agricultural land, making food safety susceptible to hazards (Baas et al., 2018). Natural areas with special protection (UNEP-

WCMC and IUCN, 2022) are particularly fragile with species with different endemism ranges  and sensitive to social, climate 

and environmental changes (Baiamonte et al., 2015). 135 

2.2.1 Fire hazard model 

Accurate spatio-temporal detection is essential for modeling and analyzing the probability of fire risk. Through k.LAB, it is 

possible to know the data origin and its traceability by verifying that the information has been validated through reliable 

sources. The data collected from different sources can be classified into two categories: historical fires and explanatory 

variables, which include weather, human and biophysical drivers. The data collection and processing are discussed in the 140 

following paragraphs. All the data and resources are semantically annotated, openly accessible and interoperable within ARIES 

models. 

Historical fire data from 2007 to 2020 were collected from two different sources: The Regional Agency of Fire Control in 

Sicily was used to identify the fire perimeter and the Fire Information for Resources Management System (FIRMS) satellite 

data to locate the ignition point (Table 2).  145 

Table 2. Information about historical fire data 

 Historical fire perimeter Historical fire ignition 

Source Regional Agency of Fire Control 

in Sicily 

FIRMS  

Spatial resolution - MODIS: 1km   

VIIRS: 375m . 

Temporal resolution 1 January 2007  - 31 December 

2019 

MODIS Collection 6: 11 

November 2000 - present 

 

VIIRS: 20 January 2012 - present 

 

CRS EPSG:102092 - 

Monte_Mario_Italy_2 - Projected 

for the years 2009 and 2017: 

EPSG:3004 - Monte Mario / Italy 

zone 2 - Projected 

EPSG:4326 - WGS 84 - 

Geographic 

Feature Type Polygon Point 

The regional agency collects the perimeter data of historical forest-fires and provides the fire start and finish dates collected 

by the Forestry Information System (SFI) and the forestry command corps of the Sicilian region (Comando Del Corpo Forestale 

Della Regione Siciliana). FIRMS was developed by the University of Maryland,  to locate active fires at near real-time by data 

from MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) 150 

https://doi.org/10.5194/egusphere-2023-138
Preprint. Discussion started: 20 February 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

(Giglio et al., 2016; Schroeder et al., 2014). MODIS is an instrument aboard Terra and Aqua satellites that provides global 

coverage every 1-2 days and VIIRS sensor is on board the Suomi JPSS-1 satellites and provides full global coverage every 12 

hours. When there was information from both satellites for the same fire perimeter, VIIRS was prioritized. Due to its spectral 

and spatial resolution, VIIRS sensor is more accurate in fire detection (omission and commission of errors) thanks to the 

detection of the radiative power of the fire, especially in low biomass areas (Fu et al., 2020). 155 

Satellite data was used to locate the fire ignition point inside the perimeter provided by the regional agency. The centroid was 

considered the ignition point for the perimeters when it wasn’t identifiable using satellite data. To prevent double-counting 

from the data sources, each fire perimeter was double-checked to verify that there was only one ignition point by fire perimeter. 

We obtained a total of 7,492 points linked with their ignition date (day, month and year). 

In addition to the ignition data, we prepared an equal number of locations without fire events. This is needed in order to 160 

preserve a balanced dataset of observations that represent ignition and the absence of ignition. The points without ignition 

were randomly generated with seeds within the study area between the 01-01-2007 and 31-12-2020 periods. It was verified 

that none of these points overlap with historically burned perimeters in date and location. The “ign” attribute differentiates 

ignition points (1) from non-ignition points (0) (Figure 2, Table 3). 

 165 

Figure 2: Distribution of historical fires (category 1, black color) and no fires (category 0, grey color) in the Sicily region from 2007 

to 2020.  

Table 3. Historical fire data in k.LAB 

Variable (k.IM 

language) 

Description Type Unit Source 
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occurrence of Fire 

within Site 

Present and  absent Discrete 1 (fire) - 0 (no fire) ARIES and 

SFI/FIRMS 

 

The data feeding the machine learning model comes from open resources on the cloud provided by well-known and reliable 170 

institutions. Those input data are incorporated automatically, depending on the spatio-temporal needs of the model. In the 

Sicily model, the data comes from the Regional Government of Sicily, the University of Catania or E-OBS project, among 

others (Table 4).  

In the case of Sicilian forest fires, the human factor is one of the main triggers that lead to the depopulation of country areas 

by land managers and the increasing number of tourists and visitors. The human drivers used as explanatory variables in the 175 

model are distance to protected areas, distance to road and distance to human settlement.  Additionally to human drivers, the 

fire danger also depends on (I) weather (especially due to long dry seasons), (II) topography and (III) environment, 

characterized by the high flammability of the Mediterranean forests (Corrao, 1992). Those drivers influence fuel type, moisture 

levels and fire behavior. 

Table 4. Explanatory variables in the BN model 180 

Variable 

(semantic 

language)  

Description Type Unit Source 

Atmospheric 

Temperature 

Mean temperature Continuous Celsius E-OBS 

Weekly Maximum 

Atmospheric 

Temperature 

Mean of maximum 

temperature in the 

last week 

Continuous Celsius ARIES (based on 

E-OBS data) 

count of Day 

without 

Precipitation 

Counting days 

since last 

precipitation 

Continuous mm ARIES (based on 

E-OBS data) 

Weekly 

Precipitation 

Volume 

Accumulated 

precipitation during 

a week 

Continuous mm ARIES (based on 

E-OBS data) 

Solar Radiation Total solar 

radiation 

Continuous J/m^2 E-OBS 

Biomass of Forest 

during Fire 

Combustible 

biomass found in 

forests 

Discrete (S1) Fig. S1 University of 

Catania 

Elevation Geographical 

elevation above sea 

Continuous m University of 

Catania 
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level, as described 

by a digital   

elevation model 

Slope Inclination of the 

above-water terrain 

in a geographical 

region 

Continuous grade University of 

Catania 

distance to 

ProtectedArea 

Distance to 

protected area 

Continuous m ARIES (based on 

OSM) 

distance to Road Distance to road Continuous m ARIES (based on 

OSM) 

distance to Human 

Settlement 

Distance to human 

settlement 

Continuous m ARIES (based on 

OSM) 

Meteorological data were obtained from the E-OBS Copernicus project (Cornes et al., 2018). We used the last version released 

in March 2021 to obtain data from 2017-01-01 to 2020-12-31. The data were processed with R software to obtain the 

meteorological data needed on each specific day as daily temperature and daily solar radiation (Table 4). 

In addition, heatwaves and long periods of drought are great drivers for the majority of extreme forest fires (Narcizo et al., 

2022; Nojarov and Nikolova, 2022; Parente et al., 2018). Moreover, with climate change, these episodes will increase in 185 

number, frequency and intensity, especially for the projections for RCP 8.5 (Molina et al., 2020). We have taken into account 

variables such as the mean of maximum temperatures, the number of days without rain and the precipitation accumulated 

during the previous week.  

The topographic factors used (slope and elevation) are constant components of the fire risk model. They have a strong influence 

on other parameters such as fuel conditions and weather. Slope and elevation were generated from a Digital Elevation Model 190 

(DEM) at a 10 meters’ resolution.  

Fuel type and land cover composition have a significant effect on fire ignition. Deep knowledge of the fuel bed is key to fire 

management, as it is one of the main components of fire risk. Fuel bed has been reformulated into fuel models for easier use 

in models and systems. The fuel type used ranges between 1 to 7 (S1, Table S1) according to the Prometheus project 

(Lasaponara et al., 2006). The land cover map source is based on the Italian Nature Map (Angelini et al., 2009). Landcover is 195 

mainly composed of extensive crops and complex farming systems (46%) so, the main fuel type is ground fuels such as grass 

(50% of land in Sicily). 29% of the land cover on the island is non-combustible. 

Among the models that were tested, one of them had the fire frequency as input, calculated with the historical fires from 2012-

2020. This model had an accuracy above 95%. After several literature searches and discussions with experts, it was decided 

not to incorporate fire frequency into the model. Although the accuracy was much better than the model finally chosen (83.6%), 200 

the main disadvantage was the possibility of overfitting. In addition, it may lower the likelihood of detecting fires in unusual 
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areas due to changes in land use or phenomena such as climate change. Finally, the difficulty of accessing new fires to 

incorporate into the frequency variable was another important reason. 

Bayesian Networks (BN) (Pearl, 1988) have been widely used in recent years and have been highlighted as a powerful tool for 

modeling complex problems, representing uncertainty and assisting stakeholders when the data is highly interlinked 205 

(Henriksen et al., 2007; Kangas and Kangas, 2004; Penman et al., 2011). Thus, the BN model is especially useful in 

environmental modeling as wildfire risk because (i) involves a high level of uncertainty, (ii) has limited or incomplete data on 

key system variables, (iii) contains both qualitative and quantitative information or data in different forms, and (vi) integrates 

multidisciplinary systems (Chen and Pollino, 2012). In addition, the system is transparent in its process, as its nodes table 

shows the dependency's strength between nodes and their parents in terms of conditional probability distribution and the 210 

relationships between variables are made explicit. 

A BN is a model that graphically represents causal assertions between variables as patterns of probabilistic dependencies. The 

Directed Acyclic Graph (DAG) of a BN is built with nodes (variables) and edges between the nodes (dependencies and mutual 

relationships between variables). Each successor node (children) is only determined by the values of its immediate 

predecessors (parents) known as parental Markov property (Pearl, 2009). Roots are the nodes without any parent and with 215 

marginal distribution (Borsuk, 2008). 

The BN has been learned using the WEKA (Waikato Environment for Knowledge Analysis) library  integrated in the k.LAB 

platform (Bouckaert, 2004; Frank et al., 2016; Willcock et al., 2018). WEKA is an open source JAVA library providing a 

collection of machine learning algorithms. The WEKA interface provides graphical and text components to inspect some BN's 

properties as basic algorithm information, the bayesian network structure, the probability distribution table or the accuracy by 220 

class. 

The model has been written in a semantically explicit way using the knowledge-Integrated Modeling language (k.IM) (Figure 

3), which compiles in Web Ontology Language (OWL) (Bao et al., 2012) and allows to ontologically define and model natural 

language-like logical expressions. A model written in k.IM is able to interoperate with other models available in the k.LAB 

environment. When modeling in k.IM concepts that have been previously defined in a knowledge-base are invoked, examples 225 

are earth:Site and chemistry:Fire as depicted in Figure 3.  Those concepts carry out meanings facilitating a semantic integration 

within the system (Villa et al., 2017). 

 

Figure 3: Bayesian network learning model written in the k.IM semantic language. 
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The BN is built with categorical values, so in case the data are continuous they have to be discretized. Discretization allows 230 

the establishment of non-linear values between variables and more complex distributions (Friedman and Goldszmidt, 1996). 

Discretizing the data helps to interpret the results more easily when it comes to decision-making processes by facilitating 

communication between modelers and end users. However, the interval selection interferes in the final results. We have been 

taking into account that the higher the number of intervals, the more data is needed to find significant dependencies (Aguilera 

et al., 2011); the nodes become weak when there are many intervals because there is less data for each distribution 235 

Among the methods to discretize (Beuzen et al., 2018), in this study we use both the equal-width and equal-frequency binning 

unsupervised methods. In the first case, the algorithm divides the data into k intervals of equal size and in the case of equal 

frequency, the user specifies the sub-ranges to divide continuous data by the sorted values into k intervals (bins) with 

approximately the same number of values (Liu et al., 2002). The bins number is determined by arity k, in our case, we observe 

the data histogram (S1 Fig. S1) and try different intervals. After modeling with different discretization ranges and obtaining 240 

similar accuracy results (S2 Table S2), we have chosen for each of the variables the minimum number of intervals in order to 

keep ecological sense, statistical significance and lose less information. The discretization applied is shown in Table 5.

    

Table 5. Discretization applied to the variables used on the fire occurrence modeling. 

Semantic  Method Bins 

occurrence of Fire within Site equal-weight 2 

AtmosphericTemperature in Celsius 10 

Weekly Maximum AtmosphericTemperature in 

Celsius 

10 

SolarRadiation in J/m^2 5 

Weekly PrecipitationVolume in mm 10 

value of Forest during Firec 8 

ount of Day without Precipitation 

 

equal-frequency 5 

Slope in grade 5 

Elevation in m 5 
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distance to ProtectedArea in m 5 

distance to Road in m 5 

distance to Human Settlement in m 5 

In order to learn the BN, we selected the K2 algorithm (Cooper and Herskovits, 1992). This type of score-based algorithm 245 

searches for the most probable belief-network structure through a heuristically search. The K2 algorithm processes each node 

in turn and greedily considers adding edges from previously processed nodes to the current one, adding the edges that 

maximizes the network's score. It turns to the next node when (i) it has reached the maximum number of parents, (ii) there are 

no more parents to add, (iii) the score has not improved (Chen et al., 2008). The number of parents for each node can be 

restricted to a predefined maximum (e.g. maxparents = 1) to mitigate overfitting. 250 

The BN predictors have been distributed in graph form (DAG) as shown in Figure 4, assigning probabilities to each variable’s 

predictor; anthropogenic and biophysical factors such as meteorology, topography and environment. 80% of the dataset was 

used to learn and 20% to test the relationship between historical fires (observations) and explanatory variables.  

Finally, in order to be more understandable for end-users and stakeholders, the results of the model were divided into 3 equal 

intervals, related to the level of occurrence (high:more than 66% of chance, medium: between 33 and 66%, low:probability of 255 

fire less than 33%). 
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Figure 4: DAG of fire occurrence BN model. 

2.2.2. Drivers of vulnerability  

Social and environmental vulnerability have been assessed as the tendency of exposed elements to be potentially damaged by 260 

a fire hazard due to its intrinsic or contextual conditions (IPCC, 2012). First, we used models developed in previous projects 

in k.LAB in order to determine the socio-ecological exposed elements. The ecosystem services models considered are those 

included in the ARIES global model set (Martínez-López et al., 2019). Once the fire hazard model is in k.LAB, all the data 

and models can interoperate between them through the semantics (Villa et al., 2017). Thus, we can reuse previous ecosystem 

services models developed (Martínez-López et al., 2019; Willcock et al., 2018) applying them to a different context and 265 

creating new knowledge. In this case, due to the specificities of Sicily and its linked with ecosystem services affected by fires, 

we choose the ecosystem services models of (i) vegetation carbon mass, (ii) pollination, (iii) outdoor recreation, (iv) 

biodiversity and (v) soil retention. These models are published  (Martínez-López et al., 2019; Willcock et al., 2018) thus we 

don’t fully describe them in this article.  

To create a comprehensive indicator of ecosystem services, we converted the ecosystem services related modeling output to a 270 

common scale, using quantitative and qualitative criteria. In order to calculate the potentially reduced social and ecological 
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services, we used the normalization method, instead of others such as qualitative categorization and probabilistic approaches 

(normal, Poisson, binaria) (Chuvieco et al., 2003). We transformed each modelling output rescaling them from 0 to 1, using 

the minimum and maximum value within the Sicily context. The quantitative scale was classified into 3 categories (1-low, 2-

medium, 3-high) using equidistant intervals; thus integrating all ecosystem services into a single value. In this quantitative 275 

cross-assessment, the most valuable component was prioritized. The final map was overlap with wildland ares 

Once we had the exposure, we located the most vulnerable elements that were exposed to fire. Spatial data were generated for 

WUI, WAI and protected areas. In order to create the WUI area, we generated a 200m buffer map from the human settlements, 

then overlaid it with the forest areas. The WAI map followed the same procedure, but with the buffer map from the agricultural 

areas. Finally, we use the FAO map (UNEP-WCMC and IUCN, 2022) for the protected areas. Vulnerable areas were 280 

overlapped with the ecosystem services exposure map. 

Finally, we use the fire occurrence model developed to predict how these ecosystem services may be affected in the future by 

fire risk under climate change conditions. The future climate data is Coupled Model Intercomparison Project 5 (CMIP5) for 

RCP 8.5 from COordinated Regional climate Downscaling EXperiment (CORDEX) (Giorgi et al., 2009). The data are bias-

corrected and simulated by state-of-the-art global and regional climate model pairs. To generate the climatic variables, we use 285 

the same process as the current variables.  

3. Results 

3.1. Historical data analysis 

During the analysis period (2007-2020) 28,8814.698 ha were burnt in 12,749 fire perimeters and the data shows significant 

interannual variability (Figure 5). The average area burnt is equivalent to 20,630 ha with 910 ignitions per year, being 2012 290 

the worst year, with 1,274 ignitions and 55,699 ha burnt. However, the monthly distribution over this period is skewed toward 

July and August, due to the weather's favorable fire conditions. August is clearly the month with more fires in all the years 

analyzed, with 4,166 ignitions and 118,481 ha burnt in total (26% more area than July, the second worst month). 
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Figure 5: Number of ignitions vs. burned area by year from 2007 to 2020. 295 

Fire frequency analysis (Figure 6) showed that a quarter of the area affected during 13 years (from 2007 to 2020) has burnt 

once and 34.8% twice. 23.1% have burnt three times or more, and nearly 6% have been burnt more than 5 times in 13 years.  

Burned area is spread throughout Sicily, however, areas close to cities, such as Palermo, have been burnt more than others. 

 

 300 
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Figure 6: Fire frequency aggregated by year. The legend shows how many times the same area has been burnt during the period of 

2007-2020. 

Fire ignition causes have been recorded since 2010. Figure 7 shows that, every year, more than 70% of fires are caused by 

arson, with 2010, 2011 and 2012 being particularly relevant. The percentage of fires caused by negligence or natural effects is 305 

of little relevance. In general, it seems that the trend of arson is decreasing significantly over the years, from 91.54% to 67.06%. 

A large part of the percentage that decreases due to arson is replaced by fires of unknown origin, so we cannot be confident 

that this trend is real. 

 

Figure 7: Percentage of ignition caused by year from 2010 to 2020.  310 

3.2. The Bayesian data-driven approach 

The Bayesian network model shows the probability of each child node under the fire occurrence parent node. For this purpose, 

the state of the parent node based on historical fire is set to the state of fire occurrence, which means that the state of fire 

occurrence is “Fire = 100%”, indicating that wildfire is certain. The posterior probability of each node is then obtained as per 

each Conditional Probability Table (CPT) (Figure 8). 315 
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Figure 8: Distribution of probability by BN node in the case of fire occurrence. 

Accordingly, the fire occurrence probability at “Atmospheric temperature” is highest between 18.75ºC and 25.55ºC and the 

weekly maximum temperature is around 27.92ºC. In over 80% of the cases, the weekly precipitation accumulated is below 

0.03 mm for fire occurrence. Moreover, the more days without precipitation and higher solar radiation, the higher the 320 

probability of fire occurrence. As for the topographic variables, the most important is the slope, since the probability of fire is 

directly proportional to the slope. The same is observed in the case of elevation but in a less obvious pattern. The probability 

of fire is higher in locations that are closer  to human activities such as roads or buildings. Finally, in the case of the 

environmental variables, the highest fire probability in fuel forest type (S1 Table S1) is in the shrubland vegetation (type 4), 

followed by broadleaf and coniferous forest and grasslands (Figure 9).  325 
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Figure 9: Distribution of fire (red) and no-fire (grey) by fuel type from 2007 to 2020. 

The most influential variables according to our BN algorithm are atmospheric temperature and fuel type.  While atmospheric 

temperature is expected to increase in variability and increase fire danger with limited options for human mitigation, fuel type 

can be managed with punctual landscape interventions reducing its combustibility level where it is more necessary. 330 

The k-fold cross-validation algorithm has been used to estimate the model's accuracy. This algorithm uses the training/testing 

process “k” times and averages the results. The results for k=10 showed that 83.997% of the instances were correctly classified 

in two values: occurrence and non-occurrence of forest fires. 

We use the confusion matrix in order to measure the performance of the classification (Table 6). The results show 12,172 

correctly classified instances, but also 1,426 false positives and 893 false negatives. The type I error (false positive), i.e. 335 

detecting a fire where in reality is not, could lead to allocating efforts to unnecessary areas. Type II error (false negative), could 

not identify the probability of fire in risk situations and, therefore, would not be managed properly. A false negative rate (0.11) 

is calculated as the number of incorrect positive predictions divided by the total number of negatives; the best false positive 

rate is 0.0. 

Table 6: Confusion matrix of fire occurrence BN modeling. 340 

  Real  

  No fire Fire Sum 

Predicte

d 

No 

fire 
5573  

893 

(type II error) 
6466 

Fire 
1426  

(type I error) 
6599  8025 
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 Sum 6999 7492 14491 

The Bayes theorem is key to interpreting the output of binary classification problems using the calculated confusion matrix. 

Precision is the confusion matrix probability P(Fire/TotalPredictedFire) = 6599/8025 = 0.822. It is the probability that the fire 

predicted as fire is true. Recall P(Fire/TotalActualFire) = 6599/7492 = 0.881 is the percentage of the actual fires that were 

correctly predicted by our classification algorithm. Table 7 also shows that the precision for the negative class (no fire) is 

0.822. Moreover, the overall accuracy (weighted average between fire and no fire) is 0.841 and 0.840 for precision and recall 345 

respectively and gives an overall picture of our model. These weighted results are close to our precision and recall values for 

fire variables because our model is balanced (7492 fires (51.70%) vs. 6999 no fires (48,29%)). Hence, the overall accuracy 

(0.84) is a good metric in this situation. 

Table 7: Sensitivity analysis of fire danger model. 

 TP 

Rate 

FP 

Rate 

Precision Recall F-

Measure 

MCC ROC PRC 

No fire 0.796 0.119 0.862 0.796 0.828 0.681 0.915 0.922 

Fire 0.881 0.204 0.822 0.881 0.851 0.681 0.915 0.903 

Weighte

d Avg. 

0.84 0.163 0.841 0.84 0.84 0.681 0.915 0.912 

The confusion matrix is also useful for measuring other significant metrics such as the ROC curve that summarizes the 350 

performance of the Bayesian classifier over all possible thresholds (Bradley, 1997; Fawcett, 2006). It measures accuracy in a 

weighted sort and is appropriate when the observations are balanced between each class, as in our case. In the fire occurrence 

model, the ROC curve (Figure 10) has a strong result of 0.915 for the fire occurrence model, because the result is close to 1. 

We want to highlight the significant F-Measure (a harmonic mean of the precision and recall) with 0.847. 
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 355 

Figure 10: ROC curve of fire occurrence model. 

As an example, we show the hazard fire model for August 2050 because this is the month with the most important historical 

fires in Sicily (Figure 11), assuming no changes in ecosystem management. Given the ease of access and reuse of models and 

data in k.LAB, the users can run the fire risk model at any time in the future until 2055, as the data are on the platform and are 

openly available. 360 

 

Figure 11: Historical ignitions vs. burned area by month from 2007 to 2020. 

In order to be more easily understandable for end-users and stakeholders, the results of the model were divided into 3 equal 

intervals, related to the level of occurrence (low: probability of fire less than 33%, medium: between 33 and 66%, high: more 

than 66% of chance). Figure 12 shows the comparison between the average results for august in 2020 and 2050. 365 
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Figure 12: Example of average fire occurrence in August 2020 (a) and 2050 (b). 

3.3. Wildfire risk levels and intermediate components 

The wildfire risk map integrates a set of variables related to exposure and vulnerability. In this study, we analyze the areas 

with important ecological values and ecosystem services for both humans and nature, that would be potentially affected in case 370 

of fire due to its exposition.  

Figure 13 compares the average spatial variability of the ecosystem services and ecological values exposed in August 2020 

and August 2050. In the horizontal axes, the figures are distributed by levels of fire probability. (low, medium, and high), 

according to the fire hazard model. The 2020 vertical axis shows that the most exposed area corresponds to the low fire 

probability level. As the level of fire probability increases, the exposed area decreases. In contrast, the 2050 axis shows that 375 

the most exposed area corresponds to the medium danger level, followed by high and low probabilities. 
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Figure 13: Exposure map of ecological values and ecosystem services that may interact with fire in 2020 and 2050. 

Linked to Figure 13, Figure 14 shows the changes (in km²) broken-down by ES. As we observed in the exposure maps (Figure 

13), the probability of danger increases in all ES. For example, the exposure to the Carbon Mass ecosystem service and 380 

Biodiversity will increase by more than 150% in the exposed areas with high fire probability (S3 Table S3). Outdoor recreation, 

Soil retention, and Pollination ecosystem services will increase by 117%, 100%, and 56%, respectively. In contrast, the 

exposure with low danger will decrease between 50% and 65% each. 
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Figure 14: Comparison of the fire hazard level -low (green), medium (yellow), high (red)- by the importance of the socio-ecological 385 
elements exposed in different color tones (low, medium or high). Values show the surface average (km²) in August 2018 and 2050. 

Figure 15 shows how the percentage of vulnerable areas is distributed in each of the variables analyzed as a function of the 

fire probability. Therefore, following the same trend as exposed areas, ecosystem services and ecological values increase fire 

risk with the influence of climate change. The WUI (WildLand-Urban Interface) case, increases by 19% for high fire 

probabilities in 2050 and almost half of the fires will be at medium risk. In both WAI (Wildland-Agriculture Interface) and 390 

protected areas, half of their area could face a high fire risk in the future, doubling the 2020 data.  
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Figure 15: Percentage of the vulnerable areas distributed in each of the variables analyzed (WUI, WAI, Protected Areas) as a 395 
function of the fire probability.  

Most of the vulnerable locations close to agricultural areas have a high probability of fire. However, one of the areas with high 

vulnerability in the protected area overlaps with sites that are difficult to access for the population, such as the Nebrodi Regional 

Park or the Madonie Regional Natural Park (Figure 16). 

Overall, the area with the highest socio-ecological value is in the northeastern quadrant of the island, coinciding with the areas 400 

of highest fire risk. In contrast, low-protected regions are primarily agricultural areas, urban surroundings, or areas that have 

been affected by fire in the recent past. These non-vulnerability areas dominate most of the Sicilian territory. 
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Figure 16: Risk map of socio-ecological values exposed in protected areas, Wildland Urban Interface and Wildland Agricultural 

Interface in August 2020. Colored from red with a value of 0 (low socio-environmental value) to blue with a value of 3 (high socio-405 
environmental value). Exposed but not vulnerable areas are shaded in grey. No wildland areas and no exposed are in white. 

4. Discussion 

Concerning data sources, although historical fire data is becoming more accessible and findable, there is still much to be done 

for enhancing their full fruition. The most reliable data are those collected in the field, usually by local administration, while 

the satellite data can help to verify the in situ information, but in many cases, it is extremely difficult to access and download 410 

field data.  Moreover, it has to be taken into account that fire sometimes cannot be properly detected by satellites: it needs a 

minimum fire size or intensity (linked to the resolution), there can be false alarms (commission errors), the information can be 

obscured by clouds or overstory vegetation, or the time of satellite overpass may not coincide with the fire. (Hantson et al., 

2013, p.201; Schroeder et al., 2008).  

Satellite and field data common problems are the scarce harmonization among data formats and the lack or bad quality of 415 

metadata. In this study, the main difficulties were the differences in parameters such as coordinate reference system, lack of 

metadata information and fire attributes between the yearly perimeters of fire. These problems were solved by integrating the 

data in k.LAB, where the reliable resources were harmonized, properly classified, and uploaded to a Geoserver to be accessible 

and with complete metadata. 

Concerning the model quality, model errors are related to data location, spatio-temporal resolution or logical consistency 420 

(Guptill and Morrison, 2013; Kraak and Ormeling, 2020). Utilizing multiple data sources adds strength to the model and has 

been especially useful for detecting small fires related to land management: the vast majority of fires in Sicily. These kinds of 
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fires may be too short-lived for the administration technicians or not intense enough to be captured by satellites. Moreover we 

consider that this strategy avoided a bias in the estimation of  predictors' probabilities (Roy et al., 2005). 

The historical fire set was analyzed, filtered, cleaned and processed prior to fire danger modeling. The frequency of fires from 425 

2007 to 2020 was analyzed; some areas have burned more than once in the same year or more than 5 years during the 13-year 

period. We suggest that future studies would have to study why this phenomenon can happen and how it could be avoided, as 

such a high frequency of fires disrupts the cycle of natural processes of plants and animals, the loss of vegetation structure and 

composition and the associated ecosystem services. 

Once the perimeters of each of the fires were identified, the associated information from the administration's fires was 430 

combined with the active fire points from the satellites to find the fire ignition area. Some differences were observed in the 

satellite and the government data. This may be due to reasons mentioned above: fires not detectable by satellites, or agricultural 

burnings detected as fires when the administration does not consider them as such. A great deal of effort was spent on data 

collection, cleaning, validation, pre-processing, and storage that complies with FAIR principles obtaining a reliable and open 

dataset: the basis of the occurrence of the fire model.  435 

The model strength has been improved by extracting information from the predictors’ data with dynamic and static variables 

such as meteorological or topographic data, respectively. Thus, the predictors have informed the model with values specific to 

each fire event. In addition, the predictors come from reliable and tested sources such as Copernicus or the Italian government 

as well as expert researchers and technicians. Some of the resources already existed within k.LAB such as protected areas or 

human settlement distribution and others were added, as fuel types or high resolution digital elevation model. The new 440 

information has been annotated in the semantic language k.IM and, like the historical fire data, now is open to any user and 

can interact with other k.LAB models in line with the FAIR principles.  

It should be noted that this model has taken into account some of the explanatory variables at the time of ignition, but also 

some variables describing the ex-ante situation. Variables such as the average maximum temperature of the previous week, 

the accumulated precipitation or the number of days without rain were prior to the fire. The influence of climatic factors can 445 

help to predict the occurrence of fires related to climate change and the stress to which the forest was exposed (Halofsky et al., 

2020; Trumbore et al., 2015). 

The machine learning algorithm used, BN (Bayesian Network), provides a flexible and adaptable approach to structure the 

peculiarities of fire occurrence modeling: different data sources, changes in spatio-temporal resolution and dynamic versus 

static input data. In addition, the evaluation of BNs presents much lower costs and efforts than other options, even when the 450 

dataset is partly incomplete, which is quite common for environment-related data (Bielza and Larrañaga, 2014). Most of the 

remaining issues are related to meteorological conditions and environmental data, either due to the punctual failure of nearby 

stations or problems in post-processing. However, these problems can be solved by integrating more complete data, which, 

once semantically annotated, will automatically substitute lower-quality resources.  

Another advantage of BNs is that they are not a black box models: the direct interpretation of the results, based on the 455 

probabilities of the predicting variables, is given in each node probability distributions. traditional modeling it is often difficult 
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to access the details of the model accuracy for the end user, leading to a lack of reliability. Thanks to k.LAB and its web 

browser k.Explorer, the accuracy of the model is accessible and interpretable for non-expert end-users as stakeholders or land 

managers as we showed in the results. In line with FAIR principles, the final output and all the variables needed to compute 

the fire occurrence are supported by a narrative report produced at runtime to facilitate its interpretation. All these outputs are 460 

open and downloadable.  

The algorithm used has provided significant values to detect areas with a high probability of fire occurrence. Thus, BNs provide 

a fast, reliable and accessible tool for land managers through k.LAB and semantics. The metrics related to type I and II errors 

can have great implications in practice, their acceptable values give credibility to the application and use of the model in real 

situations.  465 

The integrated model has been able to simplify a problem as complex as the occurrence of forest fires by combining very 

disparate datasets. Given the results, we successfully identified the different degrees of fire occurrence probability.  The model 

results change according to the most influential variables that can change over time and space, such as meteorological, 

biophysical data and human pressure on the landscape.  

By using k.LAB, a modeller can reutilize the model at any point in time, including calculating the probability of fire occurrence 470 

in real-time or in future scenarios. For example, we have run the model with future data for 2050 assuming forest management 

does not change. It has been analyzed how, due to extreme temperatures and the stress that they will place on vegetation, the 

probability of fires will be higher in a large part of Sicily and, therefore, new areas will be affected. The easy adaptation of the 

BN models together with k.Explorer visualization facilities by the stakeholders simplifies the incorporation of new data in the 

future to test different land management alternatives. 475 

As the model of fire occurrence was incorporated into the k.LAB modelling environment,, this new model was able to interact 

and connect with existing models (Villa et al., 2017). Thus, we overlapped the future probability of fire occurrence with 

ecosystem services that were already developed and published by scientific researchers. We choose the ecosystems that are 

directly affected by fire such as pollination, soil retention, outdoor recreation, biodiversity and carbon mass. 

5. Conclusions 480 

Models informing environmental decisions are usually developed in isolation, self-contained and with results mostly accessible 

to code owners and their collaborators. However, in a globalized world with increasingly complex  and intertwined problems, 

it is key to connect knowledge and develop methods that can identify integrated solutions (Balbi et al., 2022). The application 

of appropriate and reliable risk assessment techniques is key to understanding and potentially preventing future damage, but 

so is making this knowledge accessible to stakeholders. This study combines the power of Artificial Intelligence and, in 485 

particular, machine learning and machine reasoning to model the risk of fire to ecosystem services in Siciliy, the largest island 

in the Mediterranean Sea. We used the K.LAB  technology, which provides a common platform to make data and models 

interoperable and accessible to non-technical users (Balbi et al., 2022). 
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In this study, we integrated historical fire data from 2012 to 2019 and other explanatory variables to identify the areas at the 

highest risk in present and future scenarios. We developed a data-driven model using a Bayesian Network (BN) classifier. 490 

Model analysis demonstrates that the BN algorithm applied to the historical fires data and their real-time variables achieves a 

high range of predictive accuracy. Despite the identified limitations as the resolution of meteorological data or detect small 

fires, the findings reveal the usefulness of the method, including the possibility to rerun the model at different time steps, and 

spatial scales in a static or dynamic fashion.  

The fire risk spatial results are easily accessible through a web browser that can be used freely by land managers and 495 

stakeholders. This can help to create new prevention guidelines or focus on the risky areas. Moreover, the model gives scientists 

and land managers indications about the variables that mostly affect fire probability and how they can mitigate this 

environmental risk.  
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